The short-chain fatty acid crotonate reduces invasive growth and immune escape of Candida albicans by regulating hyphal gene expression

Author:

McCrory Christopher12ORCID,Verma Jiyoti1,Tucey Timothy M.1,Turner Rachael3,Weerasinghe Harshini12,Beilharz Traude H.13,Traven Ana12ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology and Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia

2. Centre to Impact AMR, Monash University, Clayton, Australia

3. Department of Biochemistry and Molecular Biology and Stem Cells and Development Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia

Abstract

ABSTRACT Microbes are exposed to nutritional and stress challenges in their environmental and host niches. To rise to these challenges, they regulate transcriptional programs that enable cellular adaptation. For instance, metabolite concentrations regulate post-translational modifications of chromatin, such as histone acetylation. In this way, metabolic signals are integrated with transcription. Over the last decade, several histone acylations have been discovered, including histone crotonylation. Their roles in microbial biology, environmental adaptation, and microbe-host interactions are incompletely defined. Here we show that the short-chain fatty acid crotonate, which is used to study histone crotonylation, changes cell morphology and immune interactions of Candida albicans . Crotonate reduces invasive hyphal morphogenesis of C. albicans within macrophages, thereby delaying macrophage killing and pathogen escape, as well as reducing inflammatory cytokine maturation. Crotonate’s ability to reduce hyphal growth is environmentally contingent and pronounced within macrophages. Moreover, crotonate is a stronger hyphal inhibitor than butyrate under the conditions that we tested. Crotonate causes increased histone crotonylation in C. albicans under hyphal growth conditions and reduces transcription of hyphae-induced genes in a manner that involves the Nrg1 repressor pathway. Increasing histone acetylation by histone deacetylase inhibition partially rescues hyphal growth and gene transcription in the presence of crotonate. These results indicate that histone crotonylation might compete with acetylation in the regulation of hyphal morphogenesis. Based on our findings, we propose that diverse acylations of histones (and likely also non-histone proteins) enable C. albicans to respond to environmental signals, which in turn regulate its cell morphology and host-pathogen interactions. IMPORTANCE Macrophages curtail the proliferation of the pathogen Candida albicans within human body niches. Within macrophages, C. albicans adapts its metabolism and switches to invasive hyphal morphology. These adaptations enable fungal growth and immune escape by triggering macrophage lysis. Transcriptional programs regulate these metabolic and morphogenetic adaptations. Here we studied the roles of chromatin in these processes and implicate lysine crotonylation, a histone mark regulated by metabolism, in hyphal morphogenesis and macrophage interactions by C. albicans . We show that the short-chain fatty acid crotonate increases histone crotonylation, reduces hyphal formation within macrophages, and slows macrophage lysis and immune escape of C. albicans . Crotonate represses hyphal gene expression, and we propose that C. albicans uses diverse acylation marks to regulate its cell morphology in host environments. Hyphal formation is a virulence property of C. albicans . Therefore, a further importance of our study stems from identifying crotonate as a hyphal inhibitor.

Funder

DHAC | National Health and Medical Research Council

Department of Education and Training | Australian Research Council

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3