Regulation of gbpC Expression in Streptococcus mutans

Author:

Biswas Indranil1,Drake Laura1,Biswas Saswati1

Affiliation:

1. Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069

Abstract

ABSTRACT Streptococcus mutans , the principal causative agent of dental caries, produces four glucan-binding proteins (Gbp) that play major roles in bacterial adherence and pathogenesis. One of these proteins, GbpC, is an important cell surface protein involved in biofilm formation. GbpC is also important for cariogenesis, bacteremia, and infective endocarditis. In this study, we examined the regulation of gbpC expression in S. mutans strain UA159. We found that gbpC expression attains the maximum level at mid-exponential growth phase, and the half-life of the transcript is less than 2 min. Expression from P gbpC was measured using a P gbpC-gusA transcriptional fusion reporter and was analyzed under various stress conditions, including thermal, osmotic, and acid stresses. Expression of gbpC is induced under conditions of thermal stress but is repressed during growth at low pH, whereas osmotic stress had no effect on expression from P gbpC . The results from the expression analyses were further confirmed using semiquantitative reverse transcription-PCR analysis. Our results also reveal that CovR, a global response regulator in many Streptococcus spp., represses gbpC expression at the transcriptional level. We demonstrated that purified CovR protein binds directly to the promoter region of P gbpC to repress gbpC expression. Using a DNase I protection assay, we showed that CovR binds to DNA sequences surrounding P gbpC from bases −68 to 28 (where base 1 is the start of transcription). In summary, our results indicate that various stress conditions modulate the expression of gbpC and that CovR negatively regulates the expression of the gbpC gene by directly binding to the promoter region.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3