Affiliation:
1. Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie, Créteil,2 and
2. Laboratoire des Bordetella,1 and
3. Station Centrale de Microscopie Electronique,3 Institut Pasteur, Paris, France
Abstract
ABSTRACT
Bordetella pertussis
, the agent of whooping cough, can invade and survive in several types of eukaryotic cell, including CHO, HeLa 229, and HEp-2 cells and macrophages. In this study, we analyzed bacterial invasiveness in nonrespiratory human HeLa epithelial cells and human HTE and HAE0 tracheal epithelial cells. Invasion assays and transmission electron microscopy analysis showed that
B. pertussis
strains invaded and survived, without multiplying, in HTE or HAE0 cells. This phenomenon was
bvg
regulated, but invasive properties differed between
B. pertussis
strains and isolates and the
B. pertussis
reference strain. Studies with
B. pertussis
mutant strains demonstrated that filamentous hemagglutinin, the major adhesin, was involved in the invasion of human tracheal epithelial cells by bacteria but not in that of HeLa cells. Fimbriae and pertussis toxin were not found to be involved. However, we found that the production of adenylate cyclase-hemolysin prevents the invasion of HeLa and HTE cells by
B. pertussis
because an adenylate cyclase-hemolysin-deficient mutant was found to be more invasive than the parental strain. The effect of adenylate cyclase-hemolysin was mediated by an increase in the cyclic AMP concentration in the cells. Pertactin (PRN), an adhesin, significantly inhibited the invasion of HTE cells by bacteria, probably via its interaction with adenylate cyclase-hemolysin. Isolates producing different PRNs were taken up similarly, indicating that the differences in the sequences of the PRNs produced by these isolates do not affect invasion. We concluded that filamentous hemagglutinin production favored invasion of human tracheal cells but that adenylate cyclase-hemolysin and PRN production significantly inhibited this process.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献