Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region

Author:

Carrington J C1,Freed D D1

Affiliation:

1. Department of Biology, Texas A&M University, College Station 77843-3258.

Abstract

The RNA genome of tobacco etch virus (TEV), a plant potyvirus, functions as an mRNA for synthesis of a 346-kilodalton polyprotein that undergoes extensive proteolytic processing. The RNA lacks a normal 5' cap structure at its terminus, which suggests that the mechanism of translational initiation differs from that of a normal cellular mRNA. We have identified a translation-enhancing activity associated with the 144-nucleotide, 5' nontranslated region (NTR) of the TEV genome. When fused to a reporter gene encoding beta-glucuronidase (GUS), the 5' NTR results in an 8- to 21-fold enhancement over a synthetic 5' NTR in a transient-expression assay in protoplasts. A similar effect was observed when the 5' NTR-GUS fusions were expressed in transgenic plants. By using a cell-free translation system, the translation enhancement activity of the TEV 5' NTR was shown to be cap independent, whereas translation of GUS mRNA containing an artificial 5' NTR required the presence of a cap structure. Translation of GUS transcripts containing the TEV 5' NTR was relatively insensitive to the cap analog m7GTP, whereas translation of transcripts containing the artificial 5' NTR was highly sensitive. The 144-nucleotide TEV 5' NTR synthesized in vitro was shown to compete for factors that are required for protein synthesis in the cell-free translation reaction mix. Competition was not observed when a transcript representing the initial 81 nucleotides of the TEV 5' NTR was tested. These results support the hypothesis that the TEV 5' NTR promotes translation in a cap-independent manner that may involve the binding of proteins and/or ribosomes to internal sites within the NTR.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3