Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli during temperature shift experiments

Author:

Taschner P E1,Huls P G1,Pas E1,Woldringh C L1

Affiliation:

1. Department of Electron Microscopy and Molecular Cytology, University of Amsterdam, The Netherlands.

Abstract

Isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli were compared with their parent strain in temperature shift experiments. To improve detection of phenotypic differences in division behavior and cell shape, the strains were grown in glucose-minimal medium with a decreased osmolality (about 100 mosM). Already at the premissive temperature, all mutants, particularly the pbpB and ftsQ mutants, showed an increased average cell length and cell mass. The pbpB and ftsQ mutants also exhibited a prolonged duration of the constriction period. All strains, except ftsZ, continued to initiate new constrictions at 42 degrees C, suggesting the involvement of FtsZ in an early step of the constriction process. The new constrictions were blunt in ftsQ and more pronounced in ftsA and pbpB filaments, which also had elongated median constrictions. Whereas the latter strains showed a slow recovery of cell division after a shift back to the permissive temperature, ftsZ and ftsQ filaments recovered quickly. Recovery of filaments occurred in all strains by the separation of newborn cells with an average length of two times LO, the length of newborn cells at the permissive temperature. The increased size of the newborn cells could indicate that the cell division machinery recovers too slowly to create normal-sized cells. Our results indicate a phenotypic resemblance between ftsA and pbpB mutants and suggest that the cell division gene products function in the order FtsZ-FtsQ-FtsA, PBP3. The ftsE mutant continued to constrict and divide at 42 degrees C, forming short filaments, which recovered quickly after a shift back to the permissive temperature. After prolonged growth at 42 degree C, chains of cells, which eventually swelled up, were formed. Although the ftsE mutant produced filaments in broth medium at the restrictive temperature, it cannot be considered a cell division mutant under the presently applied conditions.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3