A Distinct Group of Hepacivirus/Pestivirus-Like Internal Ribosomal Entry Sites in Members of Diverse Picornavirus Genera: Evidence for Modular Exchange of Functional Noncoding RNA Elements by Recombination

Author:

Hellen Christopher U. T.1,de Breyne Sylvain1

Affiliation:

1. Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203

Abstract

ABSTRACT The 5′ untranslated regions (UTRs) of the RNA genomes of Flaviviridae of the Hepacivirus and Pestivirus genera contain internal ribosomal entry sites (IRESs) that are unrelated to the two principal classes of IRESs of Picornaviridae . The mechanism of translation initiation on h epacivirus/ p estivirus (HP) IRESs, which involves factor-independent binding to ribosomal 40S subunits, also differs fundamentally from initiation on these picornavirus IRESs. Ribosomal binding to HP IRESs requires conserved sequences that form a pseudoknot and the adjacent IIId and IIIe domains; analogous elements do not occur in the two principal groups of picornavirus IRESs. Here, comparative sequence analysis was used to identify a subset of picornaviruses from multiple genera that contain 5′ UTR sequences with significant similarities to HP IRESs. They are avian encephalomyelitis virus, duck hepatitis virus 1, duck picornavirus, porcine teschovirus, porcine enterovirus 8, Seneca Valley virus, and simian picornavirus. Their 5′ UTRs are predicted to form several structures, in some of which the peripheral elements differ from the corresponding HP IRES elements but in which the core pseudoknot, domain IIId, and domain IIIe elements are all closely related. These findings suggest that HP-like IRESs have been exchanged between unrelated virus families by recombination and support the hypothesis that RNA viruses consist of modular coding and noncoding elements that can exchange and evolve independently.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3