Immunosuppressive Property within the Streptococcus pneumoniae Cell Wall That Inhibits Generation of T Follicular Helper, Germinal Center, and Plasma Cell Response to a Coimmunized Heterologous Protein

Author:

Saumyaa 12,Arjunaraja Swadhinya12,Pujanauski Lindsey3,Colino Jesus1,Torres Raul M.3,Snapper Clifford M.1

Affiliation:

1. Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

2. Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, India

3. Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, USA

Abstract

ABSTRACT We previously demonstrated that intact, inactivated Streptococcus pneumoniae (unencapsulated strain R36A) inhibits IgG responses to a number of coimmunized soluble antigens (Ags). In this study, we investigated the mechanism of this inhibition and whether other extracellular bacteria exhibited similar effects. No inhibition was observed if R36A was given 24 h before or after immunization with soluble chicken ovalbumin (cOVA), indicating that R36A acts transiently during the initiation of the immune response. Using transgenic cOVA-specific CD4 + T cells, we observed that R36A had no significant effect on T-cell activation (24 h) or generation of regulatory T cells (day 7) and only a modest effect on T-cell proliferation (48 to 96 h) in response to cOVA. However, R36A mediated a significant reduction in the formation of Ag-specific splenic germinal center T follicular helper (GC Tfh) and GC B cells and antibody-secreting cells in the spleen and bone marrow in response to cOVA or cOVA conjugated to 4-hydroxy-3-nitrophenylacetyl hapten (NP-cOVA). Of note, the inhibitory effect of intact R36A on the IgG anti-cOVA response could be reproduced using R36A-derived cell walls. In contrast to R36A, neither inactivated, unencapsulated, intact Neisseria meningitidis nor Streptococcus agalactiae inhibited the OVA-specific IgG response. These results suggest a novel immunosuppressive property within the cell wall of Streptococcus pneumoniae .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3