Involvement of Quorum Sensing and Heat-Stable Enterotoxin a in Cell Damage Caused by a Porcine Enterotoxigenic Escherichia coli Strain

Author:

Zhu Jing12,Yin Xianhua2,Yu Hai2,Zhao Liping1,Sabour Parviz2,Gong Joshua2

Affiliation:

1. Laboratory of Molecular Microbial Ecology and Ecogenomics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

2. Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9

Abstract

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains with K88 fimbriae are often associated with the outbreaks of diarrhea in newborn and weaned piglets worldwide. In the present study, we observed that 10 8 CFU/ml of K88 + ETEC strain JG280 caused more death of pig intestinal IPEC-J2 cells than did 10 9 CFU/ml, suggesting that ETEC-induced cell death was cell density dependent and that quorum sensing (QS) may play a role in pathogenesis. Subsequent investigations demonstrated a positive correlation between autoinducer 2 (AI-2) activity of JG280 and death of IPEC-J2 cells during the infection for up to 3 h. However, there was a negative correlation between AI-2 activity and expression of the JG280 enterotoxin genes estA and estB when IPEC-J2 cells were exposed to the pathogen at 10 8 CFU/ml. We therefore cloned the luxS gene (responsible for AI-2 production) from JG280 and overexpressed it in E. coli DH5α, because deletion of the luxS gene was retarded by the lack of suitable antibiotic selection markers and the resistance of this pathogen to a wide range of antibiotics. The addition of culture fluid from E. coli DH5α with the overexpressed luxS reduced cell death of IPEC-J2 cells by 10 8 CFU/ml JG280. The addition also reduced the estA expression by JG280. Nonpathogenic K88 + strain JFF4, which lacks the enterotoxin genes, caused no death of IPEC-J2 cells, although it produced AI-2 activity comparable to that produced by JG280. These results suggest the involvement of AI-2-mediated quorum sensing in K88 + ETEC pathogenesis, possibly through a negative regulation of STa production.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3