Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria

Author:

Meens J1,Herbort M1,Klein M1,Freudl R1

Affiliation:

1. Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany.

Abstract

Heterologous protein secretion was studied in the gram-positive bacteria Bacillus subtilis and Staphylococcus carnosus by using the Escherichia coli outer membrane protein OmpA as a model protein. The OmpA protein was found to be translocated across the plasma membrane of both microorganisms. However, the majority of the translocated OmpA was similarly degraded in B. subtilis and S. carnosus despite the fact that the latter organism does not secrete soluble exoproteases into the culture medium. The finding that purified OmpA, which was added externally to the culture medium of growing S. carnosus cells, remained intact indicates that newly synthesized and exported OmpA is degraded by one or more cell-associated proteases rather than by a soluble exoprotease. Fusion of the mature part of OmpA to the pre-pro part of a lipase from Staphylococcus hyicus allowed the efficient release of the corresponding propeptide-OmpA hybrid protein into the supernatant and completely prevented the cell-associated proteolytic degradation of the mature OmpA, most likely reflecting an important function of the propeptide during secretion of its natural mature lipase moiety. The relevance of our findings for the biotechnological use of gram-positive bacteria as host organisms for the secretory production of heterologous proteins is discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3