Detection of Macrolide Resistance in Mycoplasma pneumoniae by Real-Time PCR and High-Resolution Melt Analysis

Author:

Wolff Bernard J.1,Thacker W. Lanier1,Schwartz Stephanie B.1,Winchell Jonas M.1

Affiliation:

1. Respiratory Disease Branch, Centers for Disease Control and Prevention, Atlanta, Georgia

Abstract

ABSTRACT Mycoplasma pneumoniae is a significant cause of community-acquired pneumonia, which is often empirically treated with macrolides or azalides such as erythromycin or azithromycin. Recent studies have discovered the existence of macrolide-resistant strains within the population that have been mapped to mutations within the domain V region of the 23S rRNA gene. Currently, identification of these resistant strains relies on time-consuming and labor-intensive procedures such as restriction fragment length polymorphism, MIC studies, and sequence analysis. The current study reports two distinct real-time PCR assays that can detect the A2063G or A2064G base mutation (A2058G or A2059G by Escherichia coli numbering) conferring macrolide resistance. By subjecting the amplicon of the targeted domain V region of the 23S rRNA gene to a high-resolution melt curve analysis, macrolide-resistant strains can quickly be separated from susceptible strains. Utilizing this method, we screened 100 clinical isolates and found 5 strains to possess mutations conferring resistance. These findings were concordant with both sequencing and MIC data. This procedure was also used successfully to identify both susceptible and resistant genotypes in 23 patient specimens. These patient specimens tested positive for the presence of M. pneumoniae by a separate real-time PCR assay, although the bacteria could not be isolated by culture. This is the first report of a real-time PCR assay capable of detecting the dominant mutations that confer macrolide resistance on M. pneumoniae , and these assays may have utility in detecting resistant strains of other infectious agents. These assays may also allow for clinicians to select appropriate treatment options more rapidly and may provide a convenient method to conduct surveillance for genetic mutations conferring antibiotic resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3