Seminal Plasma Promotes Neisseria gonorrhoeae Aggregation and Biofilm Formation

Author:

Anderson Mark T.1,Byerly Luke2,Apicella Michael A.2,Seifert H. Steven1ORCID

Affiliation:

1. Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA

2. Department of Microbiology, University of Iowa, Iowa City, Iowa, USA

Abstract

ABSTRACT Neisseria gonorrhoeae causes the human-specific disease gonorrhea and is transmitted from person to person primarily via sexual contact. During transmission, N. gonorrhoeae is often exposed to seminal fluid and must adapt to this change in environment. Previous work demonstrated that seminal fluid facilitates N. gonorrhoeae motility and alters epithelial cell interactions. In this study, exposure to seminal fluid was found to decrease surface adherence of gonococci in a manner that was independent of Opa adhesin proteins or type IV pilus retraction. Semen was also shown to cause dispersal of bacteria that had previously established surface adherence. Although surface adherence decreased, interbacterial interactions were increased by seminal plasma both in long-term static culture and on a cell-to-cell basis over shorter time periods. The result of increased bacterium-bacterium interactions resulted in the formation of microcolonies, an important step in the N. gonorrhoeae infectious process. Seminal fluid also facilitated increased bacterial aggregation in the form of shear-resistant three-dimensional biofilms. These results emphasize the importance of the gonococcal response to the influx of seminal fluid within the genital niche. Further characterization of the N. gonorrhoeae response to semen will advance our understanding of the mechanisms behind the establishment of infection in naive hosts and the process of transmission. IMPORTANCE N. gonorrhoeae is the causative agent of the globally prevalent sexually transmitted infection gonorrhea. An understudied aspect of this human-adapted pathogen is the change in bacterial physiology that occurs during sexual transmission. N. gonorrhoeae encounters semen when transmitted from host to host, and it is known that, when N. gonorrhoeae is exposed to seminal fluid, alterations in bacterial motility and type IV pilus arrangement occur. This work extends our previous observations on this modulation of gonococcal physiology by seminal fluid and demonstrates that seminal plasma decreases surface adherence, promotes interbacterial interactions, and enhances biofilm formation.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3