Affiliation:
1. Department of Biological Sciences, Binghamton University, Binghamton, New York
2. Center for Genomic Sciences, Allegheny Singer Research Institute, Pittsburgh, Pennsylvania
3. Department of Microbiology and Immunology, Drexel University, College of Medicine, Pittsburgh, Pennsylvania
Abstract
ABSTRACT
Streptococcus pneumoniae
is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease.
S. pneumoniae
has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different
S. pneumoniae
strains representing at least 10 unique serotypes. The biofilm development process was found to occur in three distinct stages, including initial attachment, cluster formation, and biofilm maturation. While all 14 pneumococcal strains displayed similar developmental stages, the mature biofilm architecture differed significantly among the serotypes tested. Overall, three biofilm architectural groups were detected based on biomass, biofilm thickness, and cluster size. The biofilm viable cell counts and total protein concentration increased steadily over the course of biofilm development, reaching ∼8 × 10
8
cells and ∼15 mg of protein per biofilm after 9 days of biofilm growth. Proteomic analysis confirmed the presence of distinct biofilm developmental stages by the detection of multiple phenotypes over the course of biofilm development. The biofilm development process was found to correlate not only with differential production of proteins but also with a dramatic increase in the number of detectable proteins, indicating that biofilm formation by
S. pneumoniae
may be a far more complex process than previously anticipated. Protein identification revealed that proteins involved in virulence, adhesion, and resistance were more abundant under biofilm growth conditions. A possible role of the identified proteins in biofilm formation is discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献