Yeast Isw1p Forms Two Separable Complexes In Vivo

Author:

Vary, Jay C.12,Gangaraju Vamsi K.3,Qin Jun4,Landel Carolyn Church1,Kooperberg Charles5,Bartholomew Blaine3,Tsukiyama Toshio1

Affiliation:

1. Division of Basic Sciences

2. Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center and University of Washington, Seattle, Washington 98195

3. Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901

4. Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892

5. Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

Abstract

ABSTRACT There are several classes of ATP-dependent chromatin remodeling complexes, which modulate the structure of chromatin to regulate a variety of cellular processes. The budding yeast, Saccharomyces cerevisiae , encodes two ATPases of the ISWI class, Isw1p and Isw2p. Previously Isw1p was shown to copurify with three other proteins. Here we identify these associated proteins and show that Isw1p forms two separable complexes in vivo (designated Isw1a and Isw1b). Biochemical assays revealed that while both have equivalent nucleosome-stimulated ATPase activities, Isw1a and Isw1b differ in their abilities to bind to DNA and nucleosomal substrates, which possibly accounts for differences in specific activities in nucleosomal spacing and sliding. In vivo, the two Isw1 complexes have overlapping functions in transcriptional regulation of some genes yet distinct functions at others. In addition, these complexes show different contributions to cell growth at elevated temperatures.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3