Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses

Author:

Song Min-Suk12,Marathe Bindumadhav M.1,Kumar Gyanendra3,Wong Sook-San1,Rubrum Adam1,Zanin Mark1,Choi Young-Ki2,Webster Robert G.1,Govorkova Elena A.1,Webby Richard J.1

Affiliation:

1. Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

2. College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea

3. Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA

Abstract

ABSTRACT Human infections with avian influenza viruses are a serious public health concern. The neuraminidase (NA) inhibitors (NAIs) are the frontline anti-influenza drugs and are the major option for treatment of newly emerging influenza. Therefore, it is essential to identify the molecular markers of NAI resistance among specific NA subtypes of avian influenza viruses to help guide clinical management. NAI-resistant substitutions in NA subtypes other than N1 and N2 have been poorly studied. Here, we identified NA amino acid substitutions associated with NAI resistance among influenza viruses of N3, N7, and N9 subtypes which have been associated with zoonotic transmission. We applied random mutagenesis and generated recombinant influenza viruses carrying single or double NA substitution(s) with seven internal genes from A/Puerto Rico/8/1934 (H1N1) virus. In a fluorescence-based NA inhibition assay, we identified three categories of NA substitutions associated with reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir): (i) novel subtype-specific substitutions in or near the enzyme catalytic site (R152W, A246T, and D293N, N2 numbering), (ii) subtype-independent substitutions (E119G/V and/or D and R292K), and (iii) substitutions previously reported in other subtypes (Q136K, I222M, and E276D). Our data show that although some markers of resistance are present across NA subtypes, other subtype-specific markers can only be determined empirically. IMPORTANCE The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). Since most studies have focused on NAI-resistance in human influenza viruses, we investigated the molecular changes in NA that could confer NAI resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7, and N9 subtypes, which have caused human infections. We identified not only numerous NAI-resistant substitutions previously reported in other NA subtypes but also several novel changes conferring reduced susceptibility to NAIs, which are subtype specific. The findings indicate that some resistance markers are common across NA subtypes, but other markers need to be determined empirically for each subtype. The study also implies that antiviral surveillance monitoring could play a critical role in the clinical management of influenza virus infection and an essential component of pandemic preparedness.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference73 articles.

1. High levels of adamantane resistance among influenza A (H3N2) viruses and interim guidelines for use of antiviral agents–United States, 2005-06 influenza season;CDC;MMWR Morb Mortal Wkly Rep,2006

2. Influenza Drug Resistance

3. Continuing challenges in influenza

4. Influenza virus neuraminidase: Structure, antibodies, and inhibitors

5. Structure−Activity Relationship Studies of Novel Carbocyclic Influenza Neuraminidase Inhibitors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3