In vitro studies of the domains of the nitrogen fixation regulatory protein NIFA

Author:

Berger D K1,Narberhaus F1,Lee H S1,Kustu S1

Affiliation:

1. Department of Plant Biology, University of California, Berkeley 94720.

Abstract

The prokaryotic enhancer-binding protein NIFA is a multidomain transcriptional activator that catalyzes the formation of open complexes at nitrogen fixation (nif) promoters by a specialized form of RNA polymerase containing sigma 54. The NIFA protein from Klebsiella pneumoniae consists of three domains: the N-terminal domain of unknown function; the central catalytic domain, which is sufficient for transcriptional activation; and the C-terminal DNA-binding domain. Purified fusion proteins between maltose-binding protein (MBP) and NIFA deleted of its N-terminal domain (MBP-delta N-NIFA) or its C-terminal domain (MBP-NIFA-delta C) activated transcription from the K. pneumoniae nifH promoter both in vitro and in vivo. We previously showed that the same was true for a fusion between MBP and the central domain of NIFA. These results indicate that NIFA is sufficiently modular for all fusions carrying its catalytic domain to be active. Unexpectedly, however, simple predictions regarding the location of determinants of the heat lability and insolubility of NIFA, which were based on previous studies of its isolated central and C-terminal domains, were not borne out. Contrary to a previous report from this laboratory, we found that the in vitro start site of transcription for the K. pneumoniae nifH operon could be either of two adjacent G residues, as others had reported in vivo. This was true independent of the activator, i.e., with MBP-NIFA and MBP-delta N-NIFA and with the homologous activator NTRC. When open complexes were formed with GTP as the activating nucleotide, the upstream G residue was probably as a consequence of initiation of transcription.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3