Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens

Author:

Farmer J J,Fanning G R,Davis B R,O'Hara C M,Riddle C,Hickman-Brenner F W,Asbury M A,Lowery V A,Brenner D J

Abstract

Escherichia fergusonii (formerly known as Enteric Group 10) and Enterobacter taylorae (formerly known as Enteric Group 19) are proposed as new species in the family Enterobacteriaceae. By DNA hybridization (32P, 60 degrees C, hydroxyapatite), strains of E. fergusonii were 90 to 97% related to the type strain (holotype) ATCC 35469. They were most closely related to Escherichia coli and more distantly related to species in other genera. E. fergusonii strains are positive for indole production, methyl red, lysine decarboxylase, ornithine decarboxylase, and motility. They ferment D-glucose with gas production and also ferment adonitol, L-arabinose, L-rhamnose, maltose, D-xylose, trehalose, cellobiose, and D-arabitol. They are negative for Voges-Proskauer, citrate utilization (17% positive), urea hydrolysis, phenylalanine deamination, arginine dihydrolase, growth in KCN, and fermentation of lactose, sucrose, myo-inositol, D-sorbitol, raffinose, and alpha-methyl-D-glucoside. By DNA hybridization (32P, 60 degrees C, hydroxyapatite), strains of E. taylorae were 84 to 95% related to the type strain (holotype) ATCC 35317. Their nearest relative was E. cloacae, to which they were 61% related. Other named species were more distantly related. Strains of E. taylorae are positive for Voges-Proskauer, citrate utilization, arginine dihydrolase, ornithine decarboxylase, motility, growth in KCN medium, and malonate utilization. They ferment D-glucose with gas production and also ferment D-mannitol, L-arabinose, L-rhamnose, maltose, D-xylose, trehalose, and cellobiose. They are negative for indole production, methyl red, H2S production on triple sugar-iron agar, urea hydrolysis, phenylalanine deamination, lysine decarboxylase, gelatin hydrolysis, and fermentation of adonitol, i-inositol, D-sorbitol, and raffinose. Both new species occur in human clinical specimens. Two strains of E. fergusonii were isolated from blood. Five stains of E. taylorae were isolated from blood, and one was from spinal fluid. These blood and spinal fluid isolates suggest possible clinical significance, but this point requires further study.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference7 articles.

1. Antibiotic susceptibility testing by a standardized single disk method;Bauer A. W.;Am. J. Clin. Pathol.,1966

2. Polynucleotide sequence relationships among members of Enterobacteriaceae;Brenner D. J.;J. Bacteriol.,1969

3. Escherichia vulneris: a new' species of Entérobacteriaceae associated with human wounds;Brenner D. J.;J. Clin. Microbiol.,1982

4. Edwards P. R. and W. H. Ewing. 1972. Identification of Enterobacteriaceae 3rd éd. Burgess Publishing Co. Minneapolis.

5. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens;Farmer J. J.;J. Clin. Microbiol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3