Ehrlichia chaffeensis Exploits Host SUMOylation Pathways To Mediate Effector-Host Interactions and Promote Intracellular Survival

Author:

Dunphy Paige Selvy,Luo Tian,McBride Jere W.

Abstract

ABSTRACTEhrlichia chaffeensisis an obligately intracellular Gram-negative bacterium that selectively infects mononuclear phagocytes. We recently reported thatE. chaffeensisutilizes a type 1 secretion (T1S) system to export tandem repeat protein (TRP) effectors and demonstrated that these effectors interact with a functionally diverse array of host proteins. By way of these interactions, TRP effectors modulate host cell functions; however, the molecular basis of these interactions and their roles in ehrlichial pathobiology are not well defined. In this study, we describe the first bacterial protein posttranslational modification (PTM) by the small ubiquitin-like modifier (SUMO). TheE. chaffeensisT1S effector TRP120 is conjugated to SUMO at a carboxy-terminal canonical consensus SUMO conjugation motifin vitroand in human cells. In human cells, TRP120 was selectively conjugated with SUMO2/3 isoforms. Disruption of TRP120 SUMOylation perturbed interactions with known host proteins, through predicted SUMO interaction motif-dependent and -independent mechanisms.E. chaffeensisinfection did not result in dramatic changes in the global host SUMOylated protein profile, but a robust colocalization of predominately SUMO1 with ehrlichial inclusions was observed. Inhibiting the SUMO pathway with a small-molecule inhibitor had a significant impact onE. chaffeensisreplication and recruitment of the TRP120-interacting protein polycomb group ring finger protein 5 (PCGF5) to the inclusion, indicating that the SUMO pathway is critical for intracellular survival. This study reveals the novel exploitation of the SUMO pathway byEhrlichia, which facilitates effector-eukaryote interactions necessary to usurp the host and create a permissive intracellular niche.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3