Role of p38 Mitogen-Activated Protein Kinase in Middle Ear Mucosa Hyperplasia during Bacterial Otitis Media

Author:

Palacios Sean D.1,Pak Kwang12,Rivkin Alexander Z.1,Kayali Ayse G.3,Austen Darrell3,Aletsee Christoph14,Melhus Åsa15,Webster Nicholas J. G.32,Ryan Allen F.12

Affiliation:

1. Departments of Surgery/Otolaryngology

2. University of California, San Diego, and VA Medical Center, La Jolla, California

3. Medicine

4. Department of Otolaryngology, University of Wuerzburg, Wuerzburg, Germany

5. Department of Microbiology, University of Lund, Lund, Sweden

Abstract

ABSTRACT Hyperplasia of the middle ear mucosa contributes to the sequelae of acute otitis media. Understanding the signal transduction pathways that mediate hyperplasia could lead to the development of new therapeutic interventions for this disease and its sequelae. Endotoxin derived from bacteria involved in middle ear infection can contribute to the hyperplastic response. The p38 mitogen-activated protein kinase (MAPK) is known to be activated by endotoxin as well as cytokines and other inflammatory mediators that have been documented in otitis media. We assessed the activation of p38 in the middle ear mucosa of an in vivo rat bacterial otitis media model. Strong activity of p38 was observed 1 to 6 h after bacterial inoculation. Activity continued at a lower level for at least 7 days. The effects of p38 activation were assessed using an in vitro model of rat middle ear mucosal hyperplasia in which mucosal growth is stimulated by nontypeable Haemophilus influenzae during acute otitis media. Hyperplastic mucosal explants treated with the p38α and p38β inhibitor SB203580 demonstrated significant inhibition of otitis media-stimulated mucosal growth. The results of this study suggest that intracellular signaling via p38 MAPK influences the hyperplastic response of the middle ear mucosa during bacterial otitis media.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3