Characterization of the Follicular Dendritic Cell Reservoir of Human Immunodeficiency Virus Type 1

Author:

Keele Brandon F.1,Tazi Loubna2,Gartner Suzanne3,Liu Yiling3,Burgon Trever B.1,Estes Jacob D.1,Thacker Tyler C.1,Crandall Keith A.2,McArthur Justin C.3,Burton Gregory F.1

Affiliation:

1. Department of Chemistry and Biochemistry

2. Department of Biology, Brigham Young University, Provo, Utah 84602

3. Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21287

Abstract

ABSTRACT Throughout the natural course of human immunodeficiency virus (HIV) infection, follicular dendritic cells (FDCs) trap and retain large quantities of particle-associated HIV RNA in the follicles of secondary lymphoid tissue. We have previously found that murine FDCs in vivo could maintain trapped virus particles in an infectious state for at least 9 months. Here we sought to determine whether human FDCs serve as an HIV reservoir, based on the criteria that virus therein must be replication competent, genetically diverse, and archival in nature. We tested our hypothesis using postmortem cells and tissues obtained from three HIV-infected subjects and antemortem blood samples obtained from one of these subjects. Replication competence was determined using coculture, while genetic diversity and the archival nature of virus were established using phylogenetic and population genetics methods. We found that FDC-trapped virus was replication competent and demonstrated greater genetic diversity than that of virus found in most other tissues and cells. Antiretrovirus-resistant variants that were not present elsewhere were also detected on FDCs. Furthermore, genetic similarity was observed between FDC-trapped HIV and viral species recovered from peripheral blood mononuclear cells obtained 21 and 22 months antemortem, but was not present in samples obtained 4 and 18 months prior to the patient's death, indicating that FDCs can archive HIV. These data indicate that FDCs represent a significant reservoir of infectious and diverse HIV, thereby providing a mechanism for viral persistence for months to years.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference62 articles.

1. Armstrong, J. A. 1991. Ultrastructure and significance of the lymphoid tissue lesions in HIV infection, p. 69-82. In P. Racz, C. D. Dijkstra, and J. C. Gluckman (ed.), Accessory cells in HIV and other retroviral infections. Karger, Basel, Switzerland.

2. Biberfeld, P., A. Porwit, G. Biberfield, M. Harper, A. Bodner, and R. Gallo. 1988. Lymphadenopathy in HIV (HTLV-III LAV) infected subjects: the role of virus and follicular dendritic cells. Cancer Detect. Prev.12:217-224.

3. Blankson, J. N., D. Persaud, and R. F. Siliciano. 2002. The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med.53:557-593.

4. Burton, G. F., A. Masuda, S. L. Heath, B. A. Smith, J. G. Tew, and A. K. Szakal. 1997. Follicular dendritic cells (FDC) in retroviral infection: host/pathogen perspectives. Immunol. Rev.156:185-197.

5. Chun, T. W., L. Carruth, D. Finzi, X. Shen, J. A. DiGiuseppe, H. Taylor, M. Hermankova, K. Chadwick, J. Margolick, T. C. Quinn, Y. H. Kuo, R. Brookmeyer, M. A. Zeiger, P. Barditch-Crovo, and R. F. Siliciano. 1997. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature387:183-188.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3