Persistent Activation of RelA by Respiratory Syncytial Virus Involves Protein Kinase C, Underphosphorylated IκBβ, and Sequestration of Protein Phosphatase 2A by the Viral Phosphoprotein

Author:

Bitko Vira1,Barik Sailen1

Affiliation:

1. Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688-0002

Abstract

ABSTRACT Respiratory syncytial virus (RSV) activated the RelA (p65) subunit of nuclear factor kappa B (NF-κB) over many hours postinfection. The initial activation coincided with phosphorylation and degradation of IκBα, the cytoplasmic inhibitor of RelA. During persistent activation of NF-κB at later times in infection, syntheses of inhibitors IκBα as well as IκBβ were restored. However, the resynthesized IκBβ was in an underphosphorylated state, which apparently prevented inhibition of NF-κB. Use of specific inhibitors suggested that the pathway leading to the persistent—but not the initial—activation of NF-κB involved signaling through protein kinase C (PKC) and reactive oxygen intermediates of nonmitochondrial origin, whereas phospholipase C or D played little or no role. Thus, RSV infection led to the activation of NF-κB by a biphasic mechanism: a transient or early activation involving phosphorylation of the inhibitor IκB polypeptides, and a persistent or long-term activation requiring PKC and the generation of hypophosphorylated IκBβ. At least a part of the activation was through a novel mechanism in which the viral phosphoprotein P associated with but was not dephosphorylated by protein phosphatase 2A and thus sequestered and inhibited the latter. We postulate that this led to a net increase in the phosphorylation state of signaling proteins that are responsible for RelA activation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference57 articles.

1. The antiviral, antitumoural xanthate D609 is a competitive inhibitor of phosphatidylcholine-specific phospholipase C;Amtmann E.;Drugs Exp. Clin. Res.,1996

2. Antibody enhancement of respiratory syncytial virus stimulation of leukotriene production by a macrophagelike cell line

3. Protective and disease-enhancing immune responses to respiratory syncytial virus;Anderson L. J.;J. Infect. Dis.,1995

4. Interactions between a minimal protein serine/threonine phosphatase and its phosphopeptide substrate sequence;Ansai T.;J. Biol. Chem.,1996

5. Interleukin-8, interleukin-6, and soluble tumour necrosis factor receptor type I release from a human pulmonary epithelial cell line (A549) exposed to respiratory syncytial virus;Arnold R.;Immunology,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3