Alternative Sigma Factors and Their Roles in Bacterial Virulence

Author:

Kazmierczak Mark J.1,Wiedmann Martin1,Boor Kathryn J.1

Affiliation:

1. Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853

Abstract

SUMMARY Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the σ 70 and the σ 54 families. The σ 70 family includes primary sigma factors (e.g., Bacillus subtilis σ A ) as well as related alternative sigma factors; σ 54 forms a distinct subfamily of sigma factors referred to as σ N in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3