Altering under-represented DNA sequences elevates bacterial transformation efficiency

Author:

Hu Shuai1ORCID,Giacopazzi Stefani1,Modlin Ryan12,Karplus Kevin2,Bernick David L.2ORCID,Ottemann Karen M.1ORCID

Affiliation:

1. Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA

2. Department of Biomolecular Engineering, University of California, Santa Cruz, California, USA

Abstract

ABSTRACT A cornerstone of bacterial molecular biology is the ability to genetically manipulate the microbe under study. Many bacteria are difficult to manipulate genetically, a phenotype due in part to robust removal of newly acquired DNA, for example, by restriction-modification (R-M) systems. Here, we report approaches that dramatically improve bacterial transformation efficiency, piloted using a microbe that is challenging to transform due to expression of many R-M systems, Helicobacter pylori . Initially, we identified conditions that dampened expression of several R-M systems and concomitantly enhanced transformation efficiency. We then identified an approach that would broadly protect newly acquired DNA. We computationally predicted under-represented short DNA sequences in the H. pylori genome, with the idea that these sequences reflect targets of sequence-based surveillance such as R-M systems. We then used this information to modify and eliminate such sites in antibiotic resistance cassettes, creating a “stealth” version. Modifying antibiotic resistance cassettes in this way resulted in significantly higher transformation efficiency compared to non-modified cassettes, a response that was genomic loci independent. Our results suggest that avoiding R-M systems, via modification of under-represented DNA sequences or transformation conditions, is a powerful method to enhance DNA transformation. Our approach to identify under-represented sequences is applicable to any microbe with a sequenced genome. IMPORTANCE Manipulating the genomes of bacteria is critical to many fields. Such manipulations are made by genetic engineering, which often requires new pieces of DNA to be added to the genome. Bacteria have robust systems for identifying and degrading new DNA, some of which rely on restriction enzymes. These enzymes cut DNA at specific sequences. We identified a set of DNA sequences that are missing normally from a bacterium’s genome, more than would be expected by chance. Eliminating these sequences from a new piece of DNA allowed it to be incorporated into the bacterial genome at a higher frequency than new DNA containing the sequences. Removing such sequences appears to allow the new DNA to fly under the bacterial radar in “stealth” mode. This transformation improvement approach is straightforward to apply and likely broadly applicable.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3