Evolution toward extremely high imipenem resistance in Mycobacterium abscessus outbreak strains

Author:

Le Run Eva1ORCID,Tettelin Hervé2,Holland Steven M.1,Zelazny Adrian M.3ORCID

Affiliation:

1. Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA

2. Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA

3. Department of Laboratory Medicine (DLM), Microbiology Service, Clinical Center, NIH, Bethesda, Maryland, USA

Abstract

ABSTRACT Treatment of Mycobacterium abscessus pulmonary disease requires multiple antibiotics including intravenous β-lactams (e.g., imipenem). M. abscessus produces a β-lactamase (Bla Mab ) that inactivates β-lactam drugs but less efficiently carbapenems. Due to intrinsic and acquired resistance in M. abscessus and poor clinical outcomes, it is critical to understand the development of antibiotic resistance both within the host and in the setting of outbreaks. We compared serial longitudinally collected M. abscessus subsp. massiliense isolates from the index case of a cystic fibrosis center outbreak and four outbreak-related strains. We found strikingly high imipenem resistance in the later patient isolates, including the outbreak strain (MIC > 512 µg/mL). The phenomenon was recapitulated upon exposure of intracellular bacteria to imipenem. Addition of the β-lactamase inhibitor avibactam abrogated the resistant phenotype. Imipenem resistance was caused by an increase in β-lactamase activity and increased bla Mab mRNA level. Concurrent increase in transcription of the preceding ppiA gene indicated upregulation of the entire operon in the resistant strains. Deletion of the porin mspA coincided with the first increase in MIC (from 8 to 32 µg/mL). A frameshift mutation in msp2 responsible for the rough colony morphology and a SNP in ATP-dependent helicase hrpA cooccurred with the second increase in MIC (from 32 to 256 µg/mL). Increased Bla Mab expression and enzymatic activity may have been due to altered regulation of the ppiA-bla Mab operon by the mutated HrpA alone or in combination with other genes described above. This work supports using carbapenem/β-lactamase inhibitor combinations for treating M. abscessus , particularly imipenem-resistant strains.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3