Phosphorylation of the C-Raf N Region Promotes Raf Dimerization

Author:

Takahashi Maho,Li Yanping,Dillon Tara J.,Kariya Yumi,Stork Philip J. S.

Abstract

ABSTRACT The activation of Raf kinases by the small GTPase Ras requires two major sets of phosphorylations. One set lies within the activation loop, and the other lies within the N-terminal acidic region (N region). In the most abundant isoform of Raf, C-Raf, N-region phosphorylations occur on serine 338 (S338) and tyrosine 341 (Y341) and are thought to provide allosteric activation of the Raf dimer. We show that the phosphorylations of these N-region sites does not require C-Raf dimerization, but rather, they precede dimerization. One of these phosphorylations (phospho-Y341) is required for C-Raf dimerization, and this action can be replicated by phosphomimetic mutants both in vivo and in vitro. The role of the phosphorylation of Y341 in promoting Raf dimerization is distinct from its well-known function in facilitating S338 phosphorylation. In Ras mutant pancreatic cancer cell lines, the phosphorylation and dimerization of C-Raf are basally elevated. Dimerization is thought to contribute to their elevated growth rate through their activation of the mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase [ERK]) signaling cascade. Blocking the tyrosine phosphorylation of C-Raf with Src family inhibitors blocks growth, basal dimerization, and ERK activation in these cells. We suggest that the kinases mediating C-Raf Y341 phosphorylation are potential candidate drug targets in selected Ras-dependent cancers.

Funder

DH | National Institute for Health Research

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference83 articles.

1. KRAS: feeding pancreatic cancer proliferation;Bryant;Trends Biochem Sci,2014

2. Ras in cancer and developmental diseases;Fernandez-Medarde;Genes Cancer,2011

3. KRAS as a therapeutic target;McCormick;Clin Cancer Res,2015

4. Targeting RAS-ERK signalling in cancer: promises and challenges;Samatar;Nat Rev Drug Discov,2014

5. Targeting RAS signalling pathways in cancer therapy;Downward;Nat Rev Cancer,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3