In Vitro and In Vivo Antibacterial Activities of a Novel Glycylcycline, the 9- t -Butylglycylamido Derivative of Minocycline (GAR-936)

Author:

Petersen P. J.1,Jacobus N. V.1,Weiss W. J.1,Sum P. E.1,Testa R. T.1

Affiliation:

1. Infectious Disease Research Section, Wyeth-Ayerst Research, Pearl River, New York 10965

Abstract

ABSTRACT The 9- t -butylglycylamido derivative of minocycline (TBG-MINO) is a recently synthesized member of a novel group of antibiotics, the glycylcyclines. This new derivative, like the first glycylcyclines, the N , N -dimethylglycylamido derivative of minocycline and 6-demethyl-6-deoxytetracycline, possesses activity against bacterial isolates containing the two major determinants responsible for tetracycline resistance: ribosomal protection and active efflux. The in vitro activities of TBG-MINO and the comparative agents were evaluated against strains with characterized tetracycline resistance as well as a spectrum of recent clinical aerobic and anaerobic gram-positive and gram-negative bacteria. TBG-MINO, with an MIC range of 0.25 to 0.5 μg/ml, showed good activity against strains expressing tet (M) (ribosomal protection), tet (A), tet (B), tet (C), tet (D), and tet (K) (efflux resistance determinants). TBG-MINO exhibited similar activity against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant streptococci, and vancomycin-resistant enterococci (MICs at which 90% of strains are inhibited, ≤0.5 μg/ml). TBG-MINO exhibited activity against a wide diversity of gram-negative aerobic and anaerobic bacteria, most of which were less susceptible to tetracycline and minocycline. The in vivo protective effects of TBG-MINO were examined against acute lethal infections in mice caused by Escherichia coli , S. aureus , and Streptococcus pneumoniae isolates. TBG-MINO, administered intravenously, demonstrated efficacy against infections caused by S. aureus including MRSA strains and strains containing tet (K) or tet (M) resistance determinants (median effective doses [ED 50 s], 0.79 to 2.3 mg/kg of body weight). TBG-MINO demonstrated efficacy against infections caused by tetracycline-sensitive E. coli strains as well as E. coli strains containing either tet (M) or the efflux determinant tet (A), tet (B), or tet (C) (ED 50 s, 1.5 to 3.5 mg/kg). Overall, TBG-MINO shows antibacterial activity against a wide spectrum of gram-positive and gram-negative aerobic and anaerobic bacteria including strains resistant to other chemotherapeutic agents. The in vivo protective effects, especially against infections caused by resistant bacteria, corresponded with the in vitro activity of TBG-MINO.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference34 articles.

1. Tetracyclines, molecular and clinical aspects.;Chopra I.;J. Antimicrob. Chemother.,1992

2. Tetracycline resistant determinants from groups A to D vary in their ability to confer decreased accumulation of tetracycline derivatives by Escherichia coli.;Chopra I.;J. Gen. Microbiol.,1982

3. Cleeland R. Squires E. Evaluation of new antimicrobials in vitro and in experimental animal infections Antibiotics in laboratory medicine 3rd ed. Lorian V. 1991 752 783 The Williams & Wilkins Co. Baltimore Md

4. Aureomycin: a product of the continuing search for new antibiotics.;Duggar B. M.;Ann. N. Y. Acad. Sci.,1948

5. In vitro activities of two glycylcyclines against gram-positive bacteria

Cited by 352 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3