Fertilization triggers unmasking of maternal mRNAs in sea urchin eggs

Author:

Grainger J L1,Winkler M M1

Affiliation:

1. Department of Zoology, University of Texas, Austin 78712.

Abstract

Fertilization of sea urchin eggs results in a large increase in the rate of protein synthesis which is mediated by the translation of stored maternal mRNA. The masked message hypothesis suggests that messenger ribonucleoprotein particles (mRNPs) from unfertilized eggs are translationally inactive and that fertilization results in alterations of the mRNPs such that they become translationally active. Previous workers have isolated egg mRNPs by sucrose gradient centrifugation and have assayed their translational activity in heterologous cell-free systems. The conflicting results they obtained are probably due to the sensitivity of mRNPs to artifactual activation and inactivation. Previously, we demonstrated that unfractionated mRNPs in a sea urchin cell-free translation system were translationally inactive. Now, using large-pore gel filtration chromatography, we partially purified egg mRNPs while retaining their translationally repressed state. Polysomal mRNPs from fertilized eggs isolated under the same conditions were translationally active. The changes in the pattern of proteins synthesized by fractionated unfertilized and fertilized mRNPs in vitro were similar to those changes observed in vivo. Treatment of egg mRNPs with buffers containing high salt and EDTA, followed by rechromatography, resulted in the activation of the mRNPs and the release of an inhibitor of translation from the mRNPs. Analysis of the inhibitory fraction on one-dimensional sodium dodecyl sulfate gels indicated that this fraction contains a complex set of proteins, several of which were released from high-salt-EDTA-activated mRNPs and not from inactive low-salt control mRNPs. One of the released proteins may be responsible for the repression of egg mRNPs in vitro and be involved in the unmasking of mRNPs at fertilization.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3