Molecular proof that bacteriophage T4 alc and unf genes are the same gene

Author:

Snyder L,Jorissen L

Abstract

The DNA of bacteriophage T4 normally has a substituted base, hydroxymethylcytosine, instead of the usual cytosine. The bacteriophage shuts off host transcription after infection presumably by specifically blocking transcription of cytosine DNA. If T4 incorporates cytosine into its own DNA, this shutoff mechanism is directed back at itself and blocks its own transcription. Mutations which overcome this transcriptional block are in the T4 alc gene, and alc mutations allow the propagation of T4 with cytosine in their DNA (L. Snyder, L. Gold, and E. Kutter, Proc. Natl. Acad. Sci. USA 73:3098-3102, 1976). By genetic criteria, alc is the same as another gene, unf, whose product is required for the unfolding of the bacterial nucleoid after infection (K. Sirotkin, J. Wei, and L. Snyder, Nature [London] 265:28-32, 1977; D. P. Snustad, M. A. Tigges, K. A. Parson, C. J. H. Bursch, F. M. Caron, J. F. Koerner, and D. J. Tutas, J. Virol. 17:622-641, 1976; M. Tigges, C. J. H. Bursch, and D. P. Snustad, J. Virol. 24:775-785, 1977). The product of the alc gene has been identified as a 19-kilodalton protein (R. E. Herman, N. Haas, and D. P. Snustad, Genetics 108:305-317, 1984; E. Kutter, R. Drivdahl, and K. Rand, Genetics 108:291-304, 1984), and an open reading frame has been proposed to be the alc gene based on its size and map position (E. Kutter, R. Drivdahl, and K. Rand, Genetics 108:291-304, 1984). We used marker rescue techniques and DNA sequencing to confirm that this open reading frame is the alc gene. We also present a molecular proof that alc and unf are the same gene. While these results do not rigorously exclude the possibility that Unf and Alc are different activities of the same protein, they strongly support the conclusion that the unfolding of the bacterial nucleoid the blockage of transcription are but different manifestations of the same activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3