Two new enzymes that liberate undecaprenyl-phosphate to replenish the carrier lipid pool during envelope stress

Author:

Roney Ian J.1,Rudner David Z.1ORCID

Affiliation:

1. Department of Microbiology, Harvard Medical School

Abstract

ABSTRACT The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated. We recently reported that in the bacterium Bacillus subtilis , the stress-response sigma factor SigM and its cognate anti-sigma factor complex respond to changes in the free UndP pool. When levels are low, SigM activates genes that increase flux through the essential cell wall synthesis pathway, promote the recycling of the lipid carrier, and liberate the carrier from other polymer pathways. Here, we report that two additional enzymes under SigM control help maintain the free pool of UndP. One, UshA (YqjL), resembles alpha-beta hydrolases and liberates UndP from undecaprenyl-monophosphate-linked sugars. The other, UpsH (YpbG), resembles metallophosphoesterases and releases UndP from undecaprenyl-diphosphate-linked wall teichoic acids polymers but not lipid-linked peptidoglycan precursors. UshA becomes critical for growth when UndP-linked sugars are sequestered, and the carrier lipid pool is depleted. Similarly, UpsH becomes essential for viability when UndPP-linked intermediates accumulate. Mutations in the predicted catalytic residues of both putative hydrolases abrogate their function arguing that they act directly to release UndP. These findings define two new enzymes that liberate the carrier lipid from UndP- and UndPP-linked intermediates and bolster the model that the SigM stress-response pathway maintains the UndP pool and prioritizes its use for peptidoglycan synthesis. IMPORTANCE Motivated by the success of naturally occurring glycopeptide antibiotics like vancomycin, one arm of recent antibiotic discovery efforts has focused on compounds that bind lipid-linked precursors used to build extracytoplasmic polymers. Trapping these precursors depletes the universal carrier lipid undecaprenyl-phosphate, which is required for the synthesis of virtually all surface polymers, including peptidoglycan. Understanding how cells respond to this stress to restore the carrier lipid pool is critical to identifying effective drugs. Here, we report the identification of two new enzymes that are produced in response to the depletion of the carrier lipid pool. These enzymes recover the carrier lipid but cleave distinct lipid-linked precursors to do so.

Funder

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3