Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice

Author:

Tesh V L1,Burris J A1,Owens J W1,Gordon V M1,Wadolkowski E A1,O'Brien A D1,Samuel J E1

Affiliation:

1. Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.

Abstract

In earlier studies using a streptomycin-treated mouse model of infection caused by enterohemorrhagic Escherichia coli (EHEC), animals fed Shiga-like toxin type II (SLT-II)-producing strains developed acute renal cortical necrosis and died, while mice fed Shiga-like toxin type I (SLT-I)-producing clones did not die (E. A. Wadolkowski, L. M. Sung, J. A. Burris, J. E. Samuel, and A. D. O'Brien, Infect. Immun. 58:3959-3965, 1990). To examine the bases for the differences we noted between the two toxins in the murine infection model, we injected mice with purified toxins and carried out histopathological examinations. Despite the genetic and structural similarities between the two toxins, SLT-II had a 50% lethal dose (LD50) which was approximately 400 times lower than that of SLT-I when injected intravenously or intraperitoneally into mice. Histopathologic examination of toxin-injected mice revealed that detectable damage was limited to renal cortical tubule epithelial cells. Passive administration of anti-SLT-II antibodies protected mice from SLT-II-mediated kidney damage and death. Immunofluorescence staining of normal murine kidney sections incubated with purified SLT-I or SLT-II demonstrated that both toxins bound to cortical tubule and medullary duct epithelial cells. Compared with SLT-I, SLT-II was more heat and pH stable, suggesting that SLT-II is a relatively more stable macromolecule. Although both toxins bound to globotriaosylceramide, SLT-I bound with a higher affinity in a solid-phase binding assay. Differences in enzymatic activity between the two toxins were not detected. These data suggest that structural/functional differences between the two toxins, possibly involving holotoxin stability and/or receptor affinity, may contribute to the differential LD50s in mice.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3