The Secreted Form of Dengue Virus Nonstructural Protein NS1 Is Endocytosed by Hepatocytes and Accumulates in Late Endosomes: Implications for Viral Infectivity

Author:

Alcon-LePoder Sophie1,Drouet Marie-Thérèse1,Roux Pascal2,Frenkiel Marie-Pascale1,Arborio Michel3,Durand-Schneider Anne-Marie4,Maurice Michèle4,Le Blanc Isabelle5,Gruenberg Jean5,Flamand Marie1

Affiliation:

1. U.P. Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France

2. Centre d'Imagerie Dynamique, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France

3. Service d'Anatomo-pathologie, Hôpital d'Instruction des Armées du Val de Grāce, 74 Boulevard de Port Royal, 75005 Paris, France

4. INSERM U 538, Faculté de Médecine de Saint Antoine, 27 rue de Chaligny, 75012 Paris, France

5. Department of Biochemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva 4, Switzerland

Abstract

ABSTRACT The flavivirus nonstructural protein NS1 is expressed as three discrete species in infected mammalian cells: an intracellular, membrane-associated form essential for viral replication, a cell surface-associated form that may be involved in signal transduction, and a secreted form (sNS1), the biological properties of which remain elusive. To determine the distribution of the dengue virus (DEN) sNS1 protein in vivo, we have analyzed by immunohistological means the tissue tropism of purified DEN sNS1 injected intravenously into adult mice. The sNS1 protein was found predominantly associated with the liver, where hepatocytes appeared to represent a major target cell. We further showed that sNS1 could be efficiently endocytosed by human Huh7 and HepG2 hepatocytes in vitro. After its internalization, the protein was detected intracellularly for at least 48 h without being substantially degraded. Colocalization studies of sNS1 with markers of the endolysosomal compartments revealed that the protein was specifically targeted to lysobisphosphatidic acid-rich structures reminiscent of late endosomes, as confirmed by electron microscopy. Intracellular accumulation of sNS1 in Huh7 cells enhanced the fluid phase uptake of rhodamine-labeled dextran. Furthermore, preincubation of Huh7 cells with sNS1 increased dengue virus production after infection with the homologous strain of DEN-1 virus. Our results demonstrate that the accumulation of DEN sNS1 in the late endosomal compartment of hepatocytes potentializes subsequent dengue virus infection in vitro, raising the possibility that sNS1 may contribute to viral propagation in vivo.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3