Rapamycin-Resistant mTORC1 Kinase Activity Is Required for Herpesvirus Replication

Author:

Moorman Nathaniel J.1,Shenk Thomas1

Affiliation:

1. Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014

Abstract

ABSTRACT Human cytomegalovirus (HCMV) infection has been shown to activate the mTORC1 signaling pathway. However, the phosphorylation of mTORC1 targets is differentially sensitive to the mTORC1 inhibitor rapamycin, and the drug inhibits HCMV replication to a modest extent. Using Torin1, a newly developed inhibitor that targets the catalytic site of mTOR kinase, we show that HCMV replication requires both rapamycin-sensitive and rapamycin-resistant mTOR activity. The treatment of infected cells with Torin1 inhibits the phosphorylation of rapamycin-sensitive and rapamycin-resistant mTOR targets and markedly blocks the production of virus progeny. The blockade of mTOR signaling with Torin1, but not rapamycin, disrupts the assembly of the eIF4F complex and increases the association of the translational repressor 4EBP1 to the 7-methylguanosine cap-binding complex. Torin1 does not affect HCMV entry and only modestly reduces the accumulation of the immediate-early and early viral proteins that were tested despite the disruption of the eIF4F complex. In contrast, Torin1 significantly decreases the accumulation of viral DNA and the pUL99 viral late protein. Similar mTOR signaling events were observed during murine cytomegalovirus (MCMV) infection, and we utilized murine fibroblasts containing several different mutations to dissect the mechanism by which Torin1 inhibits MCMV replication. This approach demonstrated that mTORC2 and the Akt1 and Akt2 kinases are not required for the Torin1-mediated inhibition of cytomegalovirus replication. The inhibition of MCMV replication by Torin1 was rescued in cells lacking 4EBP1, demonstrating that the inactivation of 4EBP1 by mTORC1 is critical for cytomegalovirus replication. Finally, we show that Torin1 inhibits the replication of representative members of the alpha-, beta-, and gammaherpesvirus families, demonstrating the potential of mTOR kinase inhibitors as broad-spectrum antiviral agents.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3