Endoplasmic Reticulum Protein SCAP Inhibits Dengue Virus NS2B3 Protease by Suppressing Its K27-Linked Polyubiquitylation

Author:

Liu Heng1,Zhang Lele1,Sun Jin2,Chen Wei3,Li Senlin1,Wang Qiang1,Yu Huansha1,Xia Zanxian4,Jin Xia2,Wang Chen15

Affiliation:

1. State Key Laboratory of Molecular Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

2. Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

3. Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China

4. State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan Province, China

5. School of Life Science and Technology, China Pharmaceutical University, Nanjing, China

Abstract

ABSTRACT Dengue viruses (DENVs) are an emerging threat to global public health. The NS2B3 protease complex of DENV has recently been shown to cleave the antiviral protein STING and thereby subvert the innate immune signaling to facilitate virus replication. Whether host cells have a mechanism to counteract this virus-mediated immunosuppression is unclear. We discovered that the K27-linked polyubiquitination of NS3 protein facilitates its recruitment of NS2B, the formation of NS2B3, and consequently the enhanced cleavage of STING. However, an endoplasmic reticulum (ER) protein, SCAP, through binding to NS2B protein, inhibits the ubiquitination of NS3, rendering NS2B3 protease incapable of binding and cleaving STING. Importantly, ectopic expression of SCAP impaired DENV infection, whereas silencing of SCAP potentiated DENV infection. Collectively, this study uncovered a novel function of SCAP of counteracting the inhibitory action of DENV NS2B3 protease on STING signaling, suggesting that modulation of SCAP levels may have therapeutic implications. IMPORTANCE This study reports the first ubiquitylation target protein in DENV, the NS3 protein, and the unique role of K27-linked polyubiquitylation in NS3's ability to recruit NS2B and formation of the NS2B3 protease complex. Additionally, this study identified novel functions of the ER protein SCAP: one is to compete with NS2B for binding to STING, and the other is to inhibit the ubiquitination of NS3. Both of these functions protect STING from being cleaved by the NS2B3 protease and thus contribute to host antiviral response.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3