The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity

Author:

Denisenko O N1,Bomsztyk K1

Affiliation:

1. Department of Medicine, University of Washington, Seattle 98195, USA.

Abstract

The heterogeneous nuclear ribonucleoprotein K protein represents a novel class of proteins that may act as docking platforms that orchestrate cross-talk among molecules involved in signal transduction and gene expression. Using a fragment of K protein as bait in the yeast two-hybrid screen, we isolated a cDNA that encodes a protein whose primary structure has extensive similarity to the Drosophila melanogaster extra sex combs (esc) gene product, Esc, a putative silencer of homeotic genes. The cDNA that we isolated is identical to the cDNA of the recently positionally cloned mouse embryonic ectoderm development gene, eed. Like Esc, Eed contains six WD-40 repeats in the C-terminal half of the protein and is thought to repress homeotic gene expression during mouse embryogenesis. Eed binds to K protein through a domain in its N terminus, but interestingly, this domain is not found in the Drosophila Esc. Gal4-Eed fusion protein represses transcription of a reporter gene driven by a promoter that contains Gal4-binding DNA elements. Eed also represses transcription when recruited to a target promoter by Gal4-K protein. Point mutations within the eed gene that are responsible for severe embryonic development abnormalities abolished the transcriptional repressor activity of Eed. Results of this study suggest that Eed-restricted homeotic gene expression during embryogenesis reflects the action of Eed as a transcriptional repressor. The Eed-mediated transcriptional effects are likely to reflect the interaction of Eed with multiple molecular partners, including K protein.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference59 articles.

1. Characterization of EZH1, a human homolog of Drosophila Enhancer of zeste near BRCA1;Abel K. J.;Genomics,1996

2. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel, p130Cas-related protein;Alexandropoulos K.;Sin. Genes Dev.,1996

3. Identification of Bmi-1 interacting proteins as constituents of a multimeric mammalian polycomb complex;Alkema M. J.;Genes Dev.,1997

4. Elimination of false positives that arise in using the two-hybrid system;Bartel P.;BioTechniques,1993

5. IL-1 and TNF transmodulate epidermal growth factor receptors protein kinase C-independent mechanism;Bird T. A.;J. Immunol.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3