Toll-Like Receptor 4 Mediates the Antitumor Host Response Induced by a 55-Kilodalton Protein Isolated from Aeginetia indica L., a Parasitic Plant

Author:

Okamoto Masato1,Oh-e Go1,Oshikawa Tetsuya1,Furuichi Sachiko1,Tano Tomoyuki1,Ahmed Sharif U.1,Akashi Sachiko2,Miyake Kensuke2,Takeuchi Osamu3,Akira Shizuo3,Himeno Kunisuke4,Sato Mitsunobu1,Ohkubo Shinya5

Affiliation:

1. Second Department of Oral and Maxillofacial Surgery, The University of Tokushima School of Dentistry

2. Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo

3. Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka

4. Department of Microbiology and Immunology, Kyushu University School of Medicine, Fukuoka, Japan

5. Ohkubo Hospital, Tokushima

Abstract

ABSTRACT A 55-kDa protein named AILb-A, isolated from the seed extract of Aeginetia indica L., a parasitic plant, induces a Th1-type T-cell response and elicits a marked antitumor effect in tumor-bearing mice. In the present study, we examined the role of Toll-like receptors (TLRs), which have been implicated in pathogen-induced cell signaling, in AILb-A-induced immune responses. In the luciferase assay using a nuclear factor (NF)-κB-dependent reporter plasmid, AILb-A induced NF-κB activation in the cells transfected with TLR4, but not with those transfected with the TLR2 gene, in a dose-dependent manner. TLR4-mediated NF-κB activation induced by AILb-A but not by lipopolysaccharide (LPS) was also observed under serum-free conditions. In in vitro experiments using human peripheral blood mononuclear cells, AILb-A-induced cytokine production was markedly inhibited by anti-TLR4 but not by anti-CD14 antibody, while LPS-induced, TLR4-mediated cytokine production was inhibited by anti-CD14 as well as anti-TLR4 antibodies. Cytokine production, killer cell activities, maturation of dendritic cells, phosphorylation of mitogen-activated protein kinases, and nuclear translocation of interferon-regulatory factor 3 induced by AILb-A were severely impaired in TLR4-deficient but not TLR2-deficient mice. Transfection of TLR4-deficient mouse-derived macrophages with the TLR4 expression plasmid led AILb-A to induce cytokines. Finally, the antitumor effect of AILb-A was also impaired in TLR4-deficient and TLR4-mutated mice. These findings suggest that TLR4 mediates antitumor immunity induced by the plant-derived protein AILb-A.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3