Genetic Barcodes for Improved Environmental Tracking of an Anthrax Simulant

Author:

Buckley Patricia1,Rivers Bryan12,Katoski Sarah12,Kim Michael H.1,Kragl F. Joseph1,Broomall Stacey1,Krepps Michael13,Skowronski Evan W.1,Rosenzweig C. Nicole1,Paikoff Sari4,Emanuel Peter1,Gibbons Henry S.1

Affiliation:

1. Biosciences Division, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA

2. Science Applications International Corporation, Aberdeen Proving Ground, Maryland, USA

3. Excet, Inc., Aberdeen Proving Ground, Maryland, USA

4. Defense Threat Reduction Agency, Ft. Belvoir, Virginia, USA

Abstract

ABSTRACT The development of realistic risk models that predict the dissemination, dispersion and persistence of potential biothreat agents have utilized nonpathogenic surrogate organisms such as Bacillus atrophaeus subsp. globigii or commercial products such as Bacillus thuringiensis subsp. kurstaki . Comparison of results from outdoor tests under different conditions requires the use of genetically identical strains; however, the requirement for isogenic strains limits the ability to compare other desirable properties, such as the behavior in the environment of the same strain prepared using different methods. Finally, current methods do not allow long-term studies of persistence or reaerosolization in test sites where simulants are heavily used or in areas where B. thuringiensis subsp. kurstaki is applied as a biopesticide. To create a set of genetically heterogeneous yet phenotypically indistinguishable strains so that variables intrinsic to simulations (e.g., sample preparation) can be varied and the strains can be tested under otherwise identical conditions, we have developed a strategy of introducing small genetic signatures (“barcodes”) into neutral regions of the genome. The barcodes are stable over 300 generations and do not impact in vitro growth or sporulation. Each barcode contains common and specific tags that allow differentiation of marked strains from wild-type strains and from each other. Each tag is paired with specific real-time PCR assays that facilitate discrimination of barcoded strains from wild-type strains and from each other. These uniquely barcoded strains will be valuable tools for research into the environmental fate of released organisms by providing specific artificial detection signatures.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3