Human Thymidine Kinase Can Functionally Replace Herpes Simplex Virus Type 1 Thymidine Kinase for Viral Replication in Mouse Sensory Ganglia and Reactivation from Latency upon Explant

Author:

Chen Shun-Hua1,Cook W. James1,Grove Kristie L.1,Coen Donald M.1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

ABSTRACT Herpes simplex virus type 1 thymidine kinase exhibits a strikingly broad substrate specificity. It is capable of phosphorylating deoxythymidine and deoxyuridine as does human thymidine kinase, deoxycytidine as does human deoxycytidine kinase, the cytosolic kinase whose amino acid sequence it most closely resembles, and thymidylate as does human thymidylate kinase. Following peripheral inoculation of mice, viral thymidine kinase is ordinarily required for viral replication in ganglia and for reactivation from latency following ganglionic explant. To determine which activity of the viral kinase is important for replication and reactivation in mouse ganglia, recombinant viruses lacking viral thymidine kinase but expressing individual human kinases were constructed. Each recombinant virus expressed the appropriate kinase activity with early kinetics following infection of cultured cells. The virus expressing human thymidine kinase exhibited thymidine phosphorylation activity equivalent to ∼5% of that of wild-type virus in a quantitative plaque autoradiography assay. Nevertheless, it was competent for ganglionic replication and reactivation following corneal inoculation of mice. The virus expressing human thymidylate kinase was partially competent for these activities despite failing to express detectable thymidine kinase activity. The virus expressing human deoxycytidine kinase failed to replicate acutely in neurons or to reactivate from latency. Therefore, it appears that low levels of thymidine phosphorylation suffice to fulfill the role of the viral enzyme in ganglia and that this role can be partially fulfilled by thymidylate kinase activity alone.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3