A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner

Author:

Arora S K1,Ritchings B W1,Almira E C1,Lory S1,Ramphal R1

Affiliation:

1. Department of Medicine/Infectious Diseases, University of Florida, Gainesville 32610, USA.

Abstract

Previous work has demonstrated that fleR, the gene for a transcriptional activator belonging to the NtrC subfamily of response regulators, is involved in the regulation of mucin adhesion and flagellar expression by Pseudomonas aeruginosa. This report describes the identification and characterization of fleQ, the gene for another transcriptional regulator which also regulates mucin adhesion and motility in this organism. The complete nucleotide sequence of the fleQ gene was determined on both DNA strands, and an open reading frame (ORF) consisting of 1,493 nucleotides was identified. This ORF coded for a gene product of predicted molecular weight, as confirmed by the overexpression of the fleQ gene as a fusion protein under an inducible promoter. The fleQ gene is flanked by a flagellar operon, fliDSorf126, at the 5' end and the fleSR operon on the 3' end. FleQ also had striking homology to a number of proteins belonging to the NtrC subfamily of response regulators, which work in concert with the alternate sigma factor RpoN (sigma54) to activate transcription. However, FleQ lacks the residues corresponding to Asp-54 and Lys-104 of the NtrC protein which are conserved in most of the members belonging to this subfamily of regulators. In addition, unlike some of the other transcriptional activators of this group, FleQ does not appear to have a cognate sensor kinase. A chromosomal insertional mutation in the fleQ gene abolished mucin adhesion and motility of P. aeruginosa PAK and PAK-NP. Both of these functions were regained by providing the complete fleQ gene on a multicopy plasmid. The location of fleQ immediately upstream of the fleSR operon, which is also necessary for the same process, suggested that these regulators may interact in some way. We therefore examined the regulation of the fleSR operon by fleQ and vice versa. Promoter fusion experiments showed that the fleSR operon was regulated by RpoN and FleQ. On the other hand, the fleQ promoter was independent of RpoN and FleR. FleQ, thus, adds another level of regulation to motility and adhesion in P. aeruginosa, above that of fleSR. We therefore propose the existence of a regulatory cascade which consists of at least two transcriptional regulators, FleQ and FleR, in the control of motility and adhesion in P. aeruginosa.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3