The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction

Author:

Arthur M1,Depardieu F1,Gerbaud G1,Galimand M1,Leclercq R1,Courvalin P1

Affiliation:

1. Unité des Agents Antibactériens, Centre National de la Recherche Scientifique EP J0058, Institut Pasteur, Paris, France. Michel.Arthur@pasteur.fr

Abstract

Transposon Tn1546 from Enterococcus faecium BM4147 encodes a histidine protein kinase (VanS) and a response regulator (VanR) that regulate transcription of the vanHAX operon encoding a dehydrogenase (VanH), a ligase (VanA), and a D,D-dipeptidase (VanX). These last three enzymes confer resistance to glycopeptide antibiotics by production of peptidoglycan precursors ending in the depsipeptide D-alanyl-D-lactate. Transcription of vanS and the role of VanS in the regulation of the vanHAX operon were analyzed by inserting a cat reporter gene into vanS. Transcription of cat and vanX was inducible by glycopeptides in partial diploids harboring vanS and vanS(omega)cat but was constitutive in strains containing only vanS(omega)cat. Promoters P(R) and P(H), located upstream from vanR and vanH, respectively, were cloned into a promoter probing vector to study transactivation by chromosomally encoded VanR and VanS. The promoters were inactive in the absence of vanR and vanS, inducible by glycopeptides in the presence of both genes, and constitutively activated by VanR in the absence of VanS. Thus, induction of the vanHAX operon involves an amplification loop resulting from binding of phospho-VanR to the P(R) promoter and increased transcription of the vanR and vanS genes. Full activation of P(R) and P(H) by VanR was observed in the absence of VanS, indicating that the sensor negatively controls VanR in the absence of glycopeptides, presumably by dephosphorylation. Activation of the VanR response regulator in the absence of VanS may involve autophosphorylation of VanR with acetyl phosphate or phosphorylation by a heterologous histidine protein kinase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3