Molecular Serotyping of Klebsiella Species Isolates by Restriction of the Amplified Capsular Antigen Gene Cluster

Author:

Brisse Sylvain1,Issenhuth-Jeanjean Sylvie1,Grimont Patrick A. D.1

Affiliation:

1. Unité Biodiversité des Bactéries Pathogènes Emergentes (U389 INSERM), Institut Pasteur, Paris, France

Abstract

ABSTRACT The objective of the present work was to develop a molecular method that would enable determination of the capsular serotypes of Klebsiella isolates without the use of antiserum. PCR amplification of the capsular antigen gene cluster ( cps ) was followed by digestion with the restriction enzyme HincII ( cps PCR-restriction fragment length polymorphism [RFLP] analysis). The profiles (C patterns) obtained for 224 strains representing the 77 known K serotypes showed 3 to 13 fragments ranging in size from 0.2 to 4.4 kb. A total of 97 distinct C patterns were obtained; 100% of 61 pairs of samples tested twice showed reproducible C patterns. The C patterns were K-type specific; i.e., the C pattern(s) of any K serotype was distinct from the C patterns of all other K serotypes, with the only exceptions being serotypes K22 and K37, which are known to cross-react. For 12 of 17 K types for which at least two strains were included, C-pattern variations were found among strains with the same K serotype. Therefore, cps PCR-RFLP analysis has a higher discriminatory power than classical K serotyping. C-pattern identity was observed among strains with a given K type that were collected many years apart and from distinct sources, indicating C-pattern stability. Only 4.5% of the strains were nontypeable, because of unsuccessful PCR amplification (whereas 8 to 23% are nontypeable by classical K serotyping). Three of four noncapsulated strains analyzed showed recognizable C patterns. The K serotypes of 18 (82%) of 22 recent Klebsiella pneumoniae clinical isolates could be deduced from their C patterns. In conclusion, cps PCR-RFLP analysis allows determination of the K serotype, while it is easier to perform and more discriminatory than classical serotyping.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3