Alpha/Beta Interferons Regulate Murine Gammaherpesvirus Latent Gene Expression and Reactivation from Latency

Author:

Barton Erik S.1,Lutzke Mary L.2,Rochford Rosemary2,Virgin Herbert W.1

Affiliation:

1. Department of Pathology and Immunology and Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110

2. Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210

Abstract

ABSTRACT Alpha/beta interferon (IFN-α/β) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-α/β also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-α/β receptor (IFN-α/βR −/− ) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (γHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-α/βR −/− mice cleared low-dose intranasal γHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-α/βR −/− mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-α/β from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-α/β during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-α/βR −/− mice. The mechanism of IFN-α/βR action was distinct from that of IFN-γR, since IFN-α/βR −/− mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-α/βR −/− splenocytes. These data demonstrate that an IFN-α/β-induced pathway regulates γHV68 gene expression patterns during latent viral infection in vivo and that IFN-α/β plays a critical role in inhibiting viral reactivation during latency.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3