The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes

Author:

Bernard B A1,Bailly C1,Lenoir M C1,Darmon M1,Thierry F1,Yaniv M1

Affiliation:

1. Centre International de Recherches Dermatologiques Sophia Antipolis, Valbonne, France.

Abstract

The human papillomavirus type 18 (HPV18) long control region (LCR) harbors transcriptional promoter and enhancer elements. Recombinant plasmids bearing all or part of the HPV18 LCR cloned in enhancer or promoter configuration upstream of the chloramphenicol acetyltransferase (CAT) gene were transfected into human fibroblasts and keratinocytes. Although the HPV18 enhancer can function in the absence of E2 gene products in both fibroblasts and keratinocytes, the promoter activity of the HPV18 LCR is detectable in keratinocytes but not in fibroblasts, suggesting that it is tissue specific. This promoter activity was repressed in human keratinocytes not only by the bovine papillomavirus type 1 E2 gene product but also by the homologous HPV18 E2 gene product. The promoter involved in the HPV18 E2 repression is located within a 230-base-pair domain directly upstream of the E6 open reading frame of the HPV18 LCR and is probably the previously identified E6 promoter. Although one cannot rule out the possibility that this repressing effect is mediated by a truncated form of HPV18 E2 protein, as was previously demonstrated for bovine papillomavirus type 1, a more likely explanation would be that the full-length HPV18 E2 protein behaves as a repressor. Indeed, at the same doses at which it inhibits transcription from the homologous HPV18 LCR, the HPV18 E2 gene product activates transcription from constructs bearing E2-binding palindromes cloned in enhancer configuration upstream of a heterologous promoter. The fact that the homologous HPV18 E2 gene product acts as a transcriptional repressor of the HPV18 LCR suggests a possible explanation for the overexpression of E6 and E7 open reading frames in cervical carcinoma cells and in cell lines derived from them.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3