Molecular Analysis of the Contribution of the Capsular Polysaccharide and the Lipopolysaccharide O Side Chain to the Virulence of Klebsiella pneumoniae in a Murine Model of Pneumonia

Author:

Cortés Guadalupe12,Borrell Nuria3,de Astorza Beatriz12,Gómez Cristina4,Sauleda Jaume5,Albertí Sebastián12

Affiliation:

1. Unidad de Investigación

2. Área de Microbiología, Departamento de Biología, Universidad de las Islas Baleares and IMEDEA (CSIC-UIB), Palma de Mallorca, Spain

3. Servicio de Microbiología

4. Servicio de Anatomía Patológica

5. Servicio de Neumología, Hospital Universitario Son Dureta

Abstract

ABSTRACT Klebsiella pneumoniae is a common cause of gram-negative bacterial nosocomial pneumonia. Two surface polysaccharides, lipopolysaccharide (LPS) O side chain and capsular polysaccharide (CPS), are critical for the microorganism in causing sepsis, but little is known about their role in pneumonia. To investigate their contribution in the pathogenesis of K. pneumoniae pneumonia, we characterized the host response to bacterial challenge with a highly virulent clinical isolate or with isogenic insertion-duplication mutants deficient in CPS or LPS O side chain in a murine model of pneumonia. Animals challenged intratracheally with the wild-type or LPS O side chain-deficient strain developed pneumonia and became bacteremic before death. Extensive lung lesions as well as pleuritis, vasculitis, and edema were observed by histopathological examination, and polymorphonuclear infiltration was also demonstrated. In contrast, none of the animals challenged with the unencapsulated strain developed pneumonia or bacteremia. Examination of tissue from this group did not identify lung lesions, and none of the infected animals died. Analysis of the early host defense mechanisms that contributed to the clearance of the unencapsulated mutant showed that the levels of C3 deposited on the unencapsulated mutant surface were threefold higher than those for the wild-type and LPS O side chain-deficient strains. Furthermore, phagocytosis of the unencapsulated mutant by human alveolar macrophages (AM) was more efficient than that of the wild-type and LPS O side chain-deficient strains. We conclude that CPS, but not LPS O side chain, is essential for Klebsiella pneumonia because it modulates the deposition of C3 and protects the microorganisms against human AM phagocytosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference26 articles.

1. Analysis of complement C3 deposition and degradation on Klebsiella pneumoniae

2. Arakawa, Y., R. Wacharotayankun, T. Nagatsuka, H. Ito, N. Kato, and M. Ohta. 1995. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. Infect. Immun.177:1788-1796.

3. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl. 1997. Current protocols in molecular biology. Greene Publishing and Wiley Interscience New York N.Y.

4. Bartlett, J. G., P. O'Keefe, F. P. Tally, T. J. Louie, and S. L. Gorbach. 1986. Bacteriology of hospital-acquired pneumonia. Arch. Intern. Med.146:868-871.

5. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3