BIOCHEMISTRY OF SPORULATION II

Author:

Hanson Richard S.1,Srinivasan V. R.1,Halvorson H. Orin1

Affiliation:

1. School of Life Sciences, University of Illinois, Urbana, Illinois

Abstract

Hanson, Richard S. (University of Illinois, Urbana), V. R. Srinivasan, and H. Orin Halvorson . Biochemistry of sporulation. II. Enzymatic changes during sporulation of Bacillus cereus . J. Bacteriol. 86: 45–50. 1963.—It has been possible to correlate enzymatic activities of Bacillus cereus strain T with particular phases of growth and sporulation by using cultures in which the cells grow rapidly and undergo the transition from growth to sporulation in a synchronous manner. Cells harvested during vegetative growth lack a functional tricarboxylic acid cycle, and the enzymes required for the completion of this cycle are synthesized during the transition from growth to sporulation. α-Picolinic acid, a specific antisporogenic agent, prevented the synthesis of aconitase. Its effect on aconitase synthesis was reversed by agents capable of reversing its inhibition of sporulation, and, therefore, its antisporogenic activity is believed to be related to its ability to prevent the formation of an active tricarboxylic acid cycle, which is required for sporulation but not growth.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3