Progressive increases in the methylation status and heterochromatinization of the myoD CpG island during oncogenic transformation.

Author:

Rideout W M,Eversole-Cire P,Spruck C H,Hustad C M,Coetzee G A,Gonzales F A,Jones P A

Abstract

Alterations in DNA methylation patterns are one of the earliest and most common events in tumorigenesis. Overall levels of genomic methylation often decrease during transformation, but localized regions of increased methylation have been observed in the same tumors. We have examined changes in the methylation status of the muscle determination gene myoD, which contains a CpG island, as a function of oncogenic transformation. This CpG island underwent de novo methylation during immortalization of 10T1/2 cells, and progressively more sites became methylated during the subsequent transformation of the cells to oncogenicity. The greatest increase in methylation occurred in the middle of the CpG island in exon 1 during transformation. Interestingly, no methylation was apparent in the putative promoter of myoD in either the 10T1/2 cell line or its transformed derivative. The large number of sites in the CpG island that became methylated during transformation was correlated with heterochromatinization of myoD as evidenced by a decreased sensitivity to cleavage of DNA in nuclei by MspI. A site in the putative promoter also became insensitive to MspI digestion in nuclei, suggesting that the chromatin structural changes extended beyond the areas of de novo methylation. Unlike Lyonized genes on the inactive X chromosome, whose timing of replication is shifted to late S phase, myoD replicated early in S phase in the transformed cell line. Methylation analysis of myoD in DNAs from several human tumors, which presumably do not express the gene, showed that hypermethylation also frequently occurs during carcinogenesis in vivo. Thus, the progressive increase in methylation of myoD during immortalization and transformation coinciding with a change in chromatin structure, as illustrated by the in vitro tumorigenic model, may represent a common mechanism in carcinogenesis for permanently silencing the expression of genes which can influence cell growth and differentiation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of Key DNA methylation sites related to differentially expressed genes in Lung squamous cell carcinoma;Computers in Biology and Medicine;2023-12

2. Pollutants inducing epigenetic changes and diseases;Environmental Chemistry Letters;2019-11-06

3. Microfluidic electrochemical multiplex detection of bladder cancer DNA markers;Sensors and Actuators B: Chemical;2017-11

4. Epigenetics of human diseases and scope in future therapeutics;Journal of Taibah University Medical Sciences;2017-06

5. Genetic and Epigenetic Alterations in Bladder Cancer;International Neurourology Journal;2016-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3