In Vivo Disassembly and Reassembly of Protein Aggregates in Escherichia coli

Author:

Govers Sander K.1,Dutré Philip2,Aertsen Abram1

Affiliation:

1. Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium

2. Department of Computer Science, Faculty of Engineering Science, KU Leuven, Leuven, Belgium

Abstract

ABSTRACT Protein misfolding and aggregation are inevitable but detrimental cellular processes. Cells therefore possess protein quality control mechanisms based on chaperones and proteases that (re)fold or hydrolyze unfolded, misfolded, and aggregated proteins. Besides these conserved quality control mechanisms, the spatial organization of protein aggregates (PAs) inside the cell has been proposed as an important additional strategy to deal with their cytotoxicity. In the bacterium Escherichia coli , however, it remained unclear how this spatial organization is established and how this process of assembling PAs in the cell poles affects cellular physiology. In this report, high hydrostatic pressure was used to transiently reverse protein aggregation in living E. coli cells, allowing the subsequent (re)assembly of PAs to be studied in detail. This approach revealed PA assembly to be dependent on intracellular energy and metabolic activity, with the resulting PA structure being confined to the cell pole by nucleoid occlusion. Moreover, a correlation could be observed between the time needed for PA reassembly and the individual lag time of the cells, which might prevent symmetric segregation of cytotoxic PAs among siblings to occur and ensure rapid spatial clearance of molecular damage throughout the emerging population.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3