Translocation of Certain Indigenous Bacteria from the Gastrointestinal Tract to the Mesenteric Lymph Nodes and Other Organs in a Gnotobiotic Mouse Model

Author:

Berg Rodney D.1,Garlington Alva W.1

Affiliation:

1. Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine in Shreveport, Shreveport, Louisiana 71130

Abstract

Viable bacteria were not cultured from the mesenteric lymph nodes, spleens, or livers of specific-pathogen-free (SPF) mice. Viable enteric bacteria, primarily indigenous Escherichia coli and lactobacilli, were present in the mesenteric lymph nodes of gnotobiotic mice inoculated intragastrically with the whole cecal microflora from SPF mice but not in the nodes of control SPF mice similarly inoculated. These indigenous E. coli also were cultured from the mesenteric lymph nodes of 96% of gnotobiotic mice monoassociated with E. coli but from none of the mesenteric lymph nodes of SPF mice inoculated with the E. coli. Furthermore, viable E. coli were detected in the mesenteric lymph nodes of these monoassociated gnotobiotes for as long as 112 days after inoculation. Indigenous Lactobacillus acidophilus also translocated to the mesenteric lymph nodes of gnotobiotic mice monoassociated with L. acidophilus. Apparently, there are mechanisms active in SPF mice inhibiting translocation of indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes, spleens, and livers, whereas these mechanisms are either absent or reduced in gnotobiotic mice. Indigenous E. coli maintained higher population levels in the gastrointestinal tracts of the gnotobiotes compared with their population levels in SPF mice, suggesting that high bacterial population levels might promote translocation of certain bacteria from the gastrointestinal lumen to the mesenteric lymph nodes. Gnotobiotic and SPF mice, therefore, provide experimental models for determining the nature of the mechanisms operating to confine indigenous bacteria to the gastrointestinal tract in normal, healthy animals.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 734 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3