The mating pilus of E. coli pED208 acts as a conduit for ssDNA during horizontal gene transfer

Author:

Beltrán Leticia1,Torsilieri Holly2,Patkowski Jonasz B.3ORCID,Yang Jie E.4,Casanova James2,Costa Tiago R. D.3,Wright Elizabeth R.4ORCID,Egelman Edward H.1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA

2. Department of Molecular Cell Biology, University of Virginia, Charlottesville, Virginia, USA

3. Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom

4. Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

ABSTRACT Bacterial conjugation, a process of horizontal gene transfer, plays a key role in promoting the spread of antimicrobial resistance among human pathogens. The mechanism of conjugation involves the development of a conjugative pilus that forms a physical bridge between two bacterial cells and the subsequent unidirectional transfer of single-stranded DNA (ssDNA) complexed with a protein from the donor to the recipient cell. Atomic structures exist for many of the components of the type IV secretion system (T4SS), responsible for the nucleoprotein secretion, but little is known about the events preceding gene transfer, specifically what is the extent of the participation of the conjugative pilus in ssDNA transfer? There has been a longstanding debate about whether its main role is to bring a donor and a recipient cell into physical juxtaposition and form a mating junction that allows for ssDNA transfer via the T4SS machinery complex or whether ssDNA is actually transferred through the lumen of the pilus. Here, through a combination of maleimide labeling of the conjugative pilus and SeqA-YFP labeling of the transferred ssDNA, we visualize the process of bacterial conjugation in real time. We discover that the conjugative pilus is capable of transferring the ssDNA at a distance, between physically separated cells, and thus conclude that a physical mating junction is not essential for conjugative gene transfer. IMPORTANCE Bacteria are constantly exchanging DNA, which constitutes horizontal gene transfer. While some of these occurs by a non-specific process called natural transformation, some occurs by a specific mating between a donor and a recipient cell. In specific conjugation, the mating pilus is extended from the donor cell to make contact with the recipient cell, but whether DNA is actually transferred through this pilus or by another mechanism involving the type IV secretion system complex without the pilus has been an open question. Using Escherichia coli , we show that DNA can be transferred through this pilus between a donor and a recipient cell that has not established a tight mating junction, providing a new picture for the role of this pilus.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3