Mucorales fungi suppress nitric oxide production by macrophages

Author:

Soare Alexandra Y.1,Bruno Vincent M.12ORCID

Affiliation:

1. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA

2. Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA

Abstract

ABSTRACT Mucormycosis is classified by the National Institute of Allergy and Infectious Diseases as an emerging disease and is caused by Mucorales fungi. Despite the high morbidity and mortality rates associated with the disease, little is known about the host-pathogen interactions that dictate disease progression. The recent surge of mucormycosis cases among COVID-19 patients has thrust the disease and the lack of available treatments into the spotlight. Despite severe fungal angioinvasion and tissue necrosis during infection, clinical observations suggest a lack of pro-inflammatory responses. Understanding immune evasion mechanisms in mucormycosis can help guide potential therapeutic options. In this study, we demonstrate that Mucorales fungi can suppress the accumulation of nitric oxide (NO) in lipopolysaccharide- and interferon gamma-stimulated macrophages despite robust expression of the Nos2 mRNA and inducible nitric oxide synthase protein. This suppressive activity requires fungal viability and direct contact with macrophages and is not due to restricted access to L-arginine substrate. While Mucorales fungi appear to be able to remove NO from its environment, it does not account for the full suppression that we observe and suggests that Mucorales employs at least two mechanisms. Future experiments will elucidate the mechanisms by which Mucorales fungi deplete NO accumulation by macrophages and the implications of this depletion in mucormycosis pathogenesis. IMPORTANCE In October 2022, Mucorales fungi were listed in the “High Priority Group” on the first-ever list of fungal priority pathogens by the World Health Organization. As the causative agent of mucormycosis, Mucorales have become of great clinical and public health importance with growing mucormycosis numbers, notably with the exponential rise of COVID-19-associated mucormycosis cases. Despite the dire need, there are limited therapeutic options to treat mucormycosis. Our research fills in critical gaps of knowledge about how Mucorales fungi evade the host immune system. Specifically, we offer evidence that Mucorales block nitric oxide production, which is a key mediator and signaling molecule of the mammalian innate immune response to microbial pathogens. Our work offers new insight into immune evasion mechanisms by Mucorales fungi.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3