Promoters for synthesis of the pre-C and pregenomic mRNAs of human hepatitis B virus are genetically distinct and differentially regulated

Author:

Yu X1,Mertz J E1

Affiliation:

1. McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706-1599, USA.

Abstract

Two similar, yet functionally distinct genomic RNAs are transcribed from the DNA genome of the human hepatitis B virus. The pre-C RNAs encode the precore protein which is proteolytically processed to yield e antigen. The pregenomic RNAs encode both the nucleocapsid protein and reverse transcriptase and serve as the templates for viral DNA replication. To determine whether synthesis of these two RNAs is directed from a single or a closely spaced pair of promoters, we introduced point and insertion mutations into the basal elements of the promoter that directs their synthesis. Transcription from these mutants was examined both in cell-free transcription systems derived from hepatoma (HepG2) and nonliver (HeLa) cell lines and by transient transfection of hepatoma cell lines (Huh7 and HepG2). The data from these experiments indicated that synthesis of the pre-C and pregenomic RNAs is directed by two distinct promoters and that the basal elements of these two promoters partially overlap, yet are genetically separable, with each consisting of its own transcriptional initiator and a TATA box-like sequence situated approximately 25 to 30 bp upstream of its sites of initiation. A 15-bp insertion was found to be sufficient to physically separate these two promoters. Furthermore, these two promoters can be differentially regulated, with the transcriptional activator Sp1 specifically activating transcription from the pregenomic promoter and the hepatocyte nuclear factor 4 specifically repressing transcription from the pre-C promoter. Thus, we conclude that the promoters used in synthesis of the pre-C and pregenomic mRNAs are genetically distinct and separately regulated.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3