Deletion of the gene for the African swine fever virus BCL-2 family member A179L increases virus uptake and apoptosis but decreases virus spread in macrophages and reduces virulence in pigs

Author:

Reis Ana Luisa1,Rathakrishnan Anusyah1ORCID,Goulding Leah V.1ORCID,Barber Claire1,Goatley Lynnette C.1,Dixon Linda K.1ORCID

Affiliation:

1. The Pirbright Institute , Woking, Surrey, United Kingdom

Abstract

ABSTRACT The African swine fever virus (ASFV) encodes inhibitors of innate immune responses, including type I interferon and apoptosis. The BCL-2 family A179L gene was deleted from the virulent genotype I isolate Benin 97/1. In infected macrophages, this resulted in increased caspase 3 and 7 activities, Annexin V binding to surface phosphatidylserine, and DNA fragmentation, measured by terminal deoxynucleotidyl transferase nick-end labeling, compared to Benin 97/1 expressing A179L or mock-infected macrophages. These results confirmed that apoptosis was induced earlier in macrophages infected with viruses from which A179L was deleted. Increased cell entry of the A179L gene-deleted virus was indicated since the number of infected cells at early times, as measured by fluorescent protein expression, was much higher than infection with the wild-type virus. This increase in entry was reduced following blocking of the virus by binding to Annexin V, suggesting that entry was mediated by phosphatidylserine receptors. Yields of infectious viruses were similar over a single cycle but significantly lower for the A179L gene-deleted virus over a multistep growth cycle. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak cellular response to ASFV. The immunized pigs were not protected against challenge with the virulent parental virus Benin 97/1 although viremia was lower at 3 d post-challenge than the control nonimmune pigs. Thus, reduced levels of virus replication in pigs limited the induction of a protective immune response. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs. IMPORTANCE African swine fever virus (ASFV) causes a lethal disease of pigs with high economic impact in affected countries in Africa, Europe, and Asia. The virus encodes proteins that inhibit host antiviral defenses, including the type I interferon response. Host cells also activate cell death through a process called apoptosis to limit virus replication. We showed that the ASFV A179L protein, a BCL-2 family apoptosis inhibitor, is important in reducing apoptosis in infected cells since deletion of this gene increased cell death and reduced virus replication in cells infected with the A179L gene-deleted virus. Pigs immunized with the BeninΔA179L virus showed no clinical signs and a weak immune response but were not protected from infection with the deadly parental virus. The results show an important role for the A179L protein in virus replication in macrophages and virulence in pigs and suggest manipulation of apoptosis as a possible route to control infection.

Funder

UKRI | Biotechnology and Biological Sciences Research Council

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3